This is kind of neat. The report will compare your computer to a garden variety of others based on some benchmark tests. Your computer's results will be highlighted in blue. Interestingly I found that our more expensive and supposedly fastest computer ranked 7th compared to our standard desktops, which ranked 4th.

The actual tests and code for them are very interesting — see the bottom of the report.

**?BenchmarkReport[]**

BenchmarkReport[] runs the WolframMark benchmark and produces a report in a separate notebook comparing this system to a selection of reference systems.
BenchmarkReport[system1,system2, ..., data1,data2,...] produces a custom report comparing the specified systems from $BenchmarkSystems and the specified data returned from Benchmark. >>

**Needs@"Benchmarking`";**
**BenchmarkReport[]**

##
WolframMark Benchmark Report

Machine Name: w1bzzg6df934
System: Microsoft Windows (64-bit)
Date: December 3, 2015
Mathematica Version: 10.2.0
Benchmark Result: 1.33

###
WolframMark Results

###
WolframMark Sources

####
Test 1: Data Fitting

Module[{data},AbsoluteTiming[data=Flatten[Table[{x,y,z,Log[120 x]-Abs[Cos[z/300]/(140 y)]},{x,0.2`,10,0.22`},{y,0.2`,10,0.22`},{z,0.2`,10,0.22`}],2];FindFit[data,Log[a x]-Abs[Cos[b z]/(c y)],{a,b,c},{x,y,z},AccuracyGoal->6];]]

####
Test 2: Digits of Pi

AbsoluteTiming[N[\[Pi],1000000];]

####
Test 3: Discrete Fourier Transform

Module[{data},AbsoluteTiming[SeedRandom[1];data=RandomReal[{},{1200000}];Do[Fourier[data],{11}]]]

####
Test 4: Eigenvalues of a Matrix

Module[{a,b,m},AbsoluteTiming[SeedRandom[1];a=RandomReal[{},{420,420}];b=DiagonalMatrix[RandomReal[{},{420}]];m=a.b.Inverse[a];Do[Eigenvalues[m],{6}]]]

####
Test 5: Elementary Functions

Module[{m1,m2},AbsoluteTiming[SeedRandom[1];m1=RandomReal[{},{2.2`*^6}];m2=RandomReal[{},{2.2`*^6}];Do[Exp[m1];Sin[m1];ArcTan[m1,m2],{30}]]]

####
Test 6: Gamma Function

Module[{a},AbsoluteTiming[SeedRandom[1];a=RandomInteger[{80000,90000},{55}];Gamma[a]]]

####
Test 7: Large Integer Multiplication

Module[{a},AbsoluteTiming[SeedRandom[1];a=RandomInteger[{10^1100000,10^(1100000+1)},{}];Do[a (a+1),{20}]]]

####
Test 8: Matrix Arithmetic

Module[{m},AbsoluteTiming[SeedRandom[1];m=RandomReal[{},{840,840}];Do[(1.` +0.5` m)^127,{50}];]]

####
Test 9: Matrix Multiplication

Module[{m1,m2},AbsoluteTiming[SeedRandom[1];m1=RandomReal[{},{1050,1050}];m2=RandomReal[{},{1050,1050}];Do[m1.m2,{12}]]]

####
Test 10: Matrix Transpose

Module[{m},AbsoluteTiming[SeedRandom[1];m=RandomReal[{},{2070,2070}];Do[Transpose[m],{40}]]]

####
Test 11: Numerical Integration

AbsoluteTiming[NIntegrate[Sin[x^2+y^2],{x,-(2.6` \[Pi]),2.6` \[Pi]},{y,-(2.6` \[Pi]),2.6` \[Pi]}];]

####
Test 12: Polynomial Expansion

AbsoluteTiming[Expand[Times@@Table[(c+x)^3,{c,350}]];]

####
Test 13: Random Number Sort

Module[{a},AbsoluteTiming[SeedRandom[1];a=RandomInteger[{1,50000},{520000}];Do[Sort[a],{15}]]]

####
Test 14: Singular Value Decomposition

Module[{m},AbsoluteTiming[SeedRandom[1];m=RandomReal[{},{860,860}];Do[SingularValueDecomposition[m],{2}]]]

####
Test 15: Solving a Linear System

Module[{m,v},AbsoluteTiming[SeedRandom[1];m=RandomReal[{},{1150,1150}];v=RandomReal[{},{1150}];Do[LinearSolve[m,v],{16}]]]