Here is a simple recursive mapping function. This is a recursion on Lists (arrays) with arbitrary argument types, not numbers.
Recall that Map is a classic functional-style, 'structural' command since it leads us to think in terms of applying a function to an entire structure, such as an array (a List in Mathematica). The Map function saves us the trouble of 'deconstructing' the array with a Do or For loop as in procedural programming.
We define a base case and a recursive case:
1. Base case: If the source List is empty, just return it
2. Recursive case: Call itself on the Rest of each successively smaller sub-List
Clear@recursiveMap;
recursiveMap[function_,aList_List]:=
If[aList=={},{},
Prepend[recursiveMap[function,Rest@aList],function@First@aList]]
We test the base case:
recursiveMap[f,{}]
{}
We test some recursive cases:
recursiveMap[f,{a,b,c}]
{f[a],f[b],f[c]}
recursiveMap[f,Range@5]
{f[1],f[2],f[3],f[4],f[5]}
How does it work? You can go through the Trace, but essentially by calling itself repeatedly on the Rest of list (via the first, recursive 'clause' of recursiveMap, recursiveMap[function,Rest@list]), it constructs successively smaller sub-Lists and eventually hits the empty List, which is the base case.
Then it begins 'unwinding' and Prepend and the second clause of recursiveMap is repeatedly invoked (function@First@list). Starting with the last List of a single element (c in this Trace), it applies the function f to the First element of each sub-List and Prepends it to a growing List of results until the First element of the entire list is Prepended.
Trace@recursiveMap[f,{a,b,c}]
{recursiveMap[f,{a,b,c}],If[{a,b,c}=={},{},Prepend[recursiveMap[f,Rest[{a,b,c}]],f[First[{a,b,c}]]]],{{a,b,c}=={},False},If[False,{},Prepend[recursiveMap[f,Rest[{a,b,c}]],f[First[{a,b,c}]]]],Prepend[recursiveMap[f,Rest[{a,b,c}]],f[First[{a,b,c}]]],{{Rest[{a,b,c}],{b,c}},recursiveMap[f,{b,c}],If[{b,c}=={},{},Prepend[recursiveMap[f,Rest[{b,c}]],f[First[{b,c}]]]],{{b,c}=={},False},If[False,{},Prepend[recursiveMap[f,Rest[{b,c}]],f[First[{b,c}]]]],Prepend[recursiveMap[f,Rest[{b,c}]],f[First[{b,c}]]],{{Rest[{b,c}],{c}},recursiveMap[f,{c}],If[{c}=={},{},Prepend[recursiveMap[f,Rest[{c}]],f[First[{c}]]]],{{c}=={},False},If[False,{},Prepend[recursiveMap[f,Rest[{c}]],f[First[{c}]]]],Prepend[recursiveMap[f,Rest[{c}]],f[First[{c}]]],{{Rest[{c}],{}},recursiveMap[f,{}],If[{}=={},{},Prepend[recursiveMap[f,Rest[{}]],f[First[{}]]]],{{}=={},True},If[True,{},Prepend[recursiveMap[f,Rest[{}]],f[First[{}]]]],{}},{{First[{c}],c},f[c]},Prepend[{},f[c]],{f[c]}},{{First[{b,c}],b},f[b]},Prepend[{f[c]},f[b]],{f[b],f[c]}},{{First[{a,b,c}],a},f[a]},Prepend[{f[b],f[c]},f[a]],{f[a],f[b],f[c]}}
Source: David Wagner
Recall that Map is a classic functional-style, 'structural' command since it leads us to think in terms of applying a function to an entire structure, such as an array (a List in Mathematica). The Map function saves us the trouble of 'deconstructing' the array with a Do or For loop as in procedural programming.
We define a base case and a recursive case:
1. Base case: If the source List is empty, just return it
2. Recursive case: Call itself on the Rest of each successively smaller sub-List
Clear@recursiveMap;
recursiveMap[function_,aList_List]:=
If[aList=={},{},
Prepend[recursiveMap[function,Rest@aList],function@First@aList]]
We test the base case:
recursiveMap[f,{}]
{}
We test some recursive cases:
recursiveMap[f,{a,b,c}]
{f[a],f[b],f[c]}
recursiveMap[f,Range@5]
{f[1],f[2],f[3],f[4],f[5]}
How does it work? You can go through the Trace, but essentially by calling itself repeatedly on the Rest of list (via the first, recursive 'clause' of recursiveMap, recursiveMap[function,Rest@list]), it constructs successively smaller sub-Lists and eventually hits the empty List, which is the base case.
Then it begins 'unwinding' and Prepend and the second clause of recursiveMap is repeatedly invoked (function@First@list). Starting with the last List of a single element (c in this Trace), it applies the function f to the First element of each sub-List and Prepends it to a growing List of results until the First element of the entire list is Prepended.
Trace@recursiveMap[f,{a,b,c}]
{recursiveMap[f,{a,b,c}],If[{a,b,c}=={},{},Prepend[recursiveMap[f,Rest[{a,b,c}]],f[First[{a,b,c}]]]],{{a,b,c}=={},False},If[False,{},Prepend[recursiveMap[f,Rest[{a,b,c}]],f[First[{a,b,c}]]]],Prepend[recursiveMap[f,Rest[{a,b,c}]],f[First[{a,b,c}]]],{{Rest[{a,b,c}],{b,c}},recursiveMap[f,{b,c}],If[{b,c}=={},{},Prepend[recursiveMap[f,Rest[{b,c}]],f[First[{b,c}]]]],{{b,c}=={},False},If[False,{},Prepend[recursiveMap[f,Rest[{b,c}]],f[First[{b,c}]]]],Prepend[recursiveMap[f,Rest[{b,c}]],f[First[{b,c}]]],{{Rest[{b,c}],{c}},recursiveMap[f,{c}],If[{c}=={},{},Prepend[recursiveMap[f,Rest[{c}]],f[First[{c}]]]],{{c}=={},False},If[False,{},Prepend[recursiveMap[f,Rest[{c}]],f[First[{c}]]]],Prepend[recursiveMap[f,Rest[{c}]],f[First[{c}]]],{{Rest[{c}],{}},recursiveMap[f,{}],If[{}=={},{},Prepend[recursiveMap[f,Rest[{}]],f[First[{}]]]],{{}=={},True},If[True,{},Prepend[recursiveMap[f,Rest[{}]],f[First[{}]]]],{}},{{First[{c}],c},f[c]},Prepend[{},f[c]],{f[c]}},{{First[{b,c}],b},f[b]},Prepend[{f[c]},f[b]],{f[b],f[c]}},{{First[{a,b,c}],a},f[a]},Prepend[{f[b],f[c]},f[a]],{f[a],f[b],f[c]}}
Source: David Wagner
No comments:
Post a Comment